学术资讯 » 学界研圈

  • 首 页
  • 期刊选题
  • 期刊点评
  • 期刊大全
  • 学人博客
  • 编辑征稿
  • 投稿选刊
  • 万维群组
  • 学术会议
  • 万维读书
  • SCI/E期刊
  • SSCI期刊
  • AHCI期刊
  • Bootstrap,样本量有限情况下,预测模型评估的好方法!

    阅读: 2022/3/28 10:48:57

    Bootstrap(自助法、自举法)是非参数统计中一种重要的估计统计量方差,进而进行区间估计的统计方法。

    Bootstrap通过对给定数据集进行有放回的重抽样以创建多个模拟数据集,生成一系列待检验统计量的经验分布,可以计算标准误差、构建置信区间并对多种类型的样本统计信息进行假设检验。

    Bootstrap无需假设一个特定的理论分布,便可生成统计量的置信区间并能检验统计假设,更易于理解以及适用于更多条件,因此常作为传统假设检验的替代方法。

    Bootstrap方法最早由美国斯坦福大学统计学教授Efron于1979年提出,是基于大量计算的一种模拟抽样统计推断方法。

    Bootstrap方法的原理其实很简单,它设有一个容量为n的数据样本,从这一样本按放回抽样的方法抽取一个容量为n的样本,这种样本称为Bootstrap样本或称为自助样本。相继地、独立地自原始样本抽取很多个Bootstrap样本,利用这些样本对总体进行统计推断。如下图所示:

    Boostrap主要是用来对于预测模型进行区分度以及校准度的评估。通常我们对预测模型预测效能的评估,需要从模型区分度,校准度进行评估。前者是通过AUC来实现,后者是通过校准曲线来实现。但是在什么样本集上进行模型的验证,则有很多方法。当然最好是进行外部验证,也就是在训练集之外,再找一部分样本进行验证,得出来的结果才是可靠的。第二可以进行内部验证。Boostrap就是内部验证的一种。往往在样本量有限的情况下,更加有用。

    Boostrap是内部验证的方法,结果看两点,一是两次预测模型系数可稳定;二是ROC曲线的AUC。也就是先进行一次正常Logistic回归,利用预测的概率进行ROC;然后根据Boostrap后的模型系数,手动写出方程,再次预测Bootstrap后的预测概率,然后对概率再次得到ROC;然后可以比较两次的ROC,如果相差不大说明可重复性较好。

     

    如有侵权,请联系本站删除!

    浏览(686)
    点赞(0)
    收藏(0)
  • 上一篇:标书画个模式/机制图,看看这个网站

    下一篇:中纪委晚间通报:两名高校领导被查!

  • 首页

  • 文章

  • 期刊

  • 帮助

  • 我的

版权所有 Copyright@2023    备案号:豫ICP备2021036211号