阅读: 2023/2/23 11:42:09
2022年第3期封面文章
本文开发了一种基于高性能感应电磁泵作为驱动源的液态金属小通道冷却技术,用于高热通量电子器件热管理。研究发现:
1)旋转永磁体驱动的高性能感应电磁泵最大可以产生160 kPa压头和3.24 L/min流量,为液态金属小通道散热器提供了足够的驱动力;
2)在热源温升保持在50°C以下的条件下,液态金属冷却系统可以实现高达242 W/cm2的散热需求,并且通过提升电磁泵转速的方式可以显著提高热管理系统的冷却性能;
3)接触热阻是影响高热流密度热管理散热能力的重要因素。与传统导热硅脂相比,液态金属热界面材料可以降低接触热阻(约18.4%)。
基于高性能感应电磁泵(PM-EMP),开发了一种用于高热流密度热管理的小通道散热技术。采用泵体与支撑结构轭铁一体化设计,研制出一种高性能PM-EMP。通过原理实验,验证了PM-EMP的驱动性能。该泵在400 r/min时,最大可以提供160 kPa的压头和3.24 L/min的流量,这意味着PM-EMP完全能够充分驱动小通道散热器中的液态金属。研究还发现,增大转速可以显著提高PM-EMP驱动性能。此外,值得注意的是,压头随流量平稳下降,使PM-EMP运行更加平稳。
图1 PM-EMP说明
(a)三维示意图;(b)横截面示意图;(c)工作原理图;(d)试验样机。
为了研究传热和流体动力学特性,建立了液态金属小通道热管理的实验测试系统。结果表明,当热源温升(ΔTh)低于50 °C时,冷却系统可实现242 W/cm2的散热需求。值得注意的是,提高转速n(特别是在n从100 r/min变化到200 r/min时)可以显著提升液态金属小通道散热能力。接触热阻是影响高热流密度热管理散热能力的重要因素。与传统导热硅脂相比,导热优良的液态金属热界面材料能更有效地降低接触热阻(约18.4%),这将显著降低热源的温升(当n = 100 r/min, q = 165 W/cm2时,ΔTh 降低了7.4 °C)。因此,以高性能感应电磁泵为驱动源的液态金属小通道冷却技术在大热功率及高热流密度电子器件的热管理方面具有广阔的应用前景。
转自:“高教学术”微信公众号
如有侵权,请联系本站删除!