学术资讯 » 学界研圈

  • 首 页
  • 期刊选题
  • 期刊点评
  • 期刊大全
  • 学人博客
  • 编辑征稿
  • 投稿选刊
  • 万维群组
  • 学术会议
  • 万维读书
  • SCI/E期刊
  • SSCI期刊
  • AHCI期刊
  • 总结|医学统计学各种资料比较选择方法

    阅读: 2023/7/20 11:30:44

    一、两组或多组计量资料的比较

    1.两组资料:

    1)大样本资料或服从正态分布的小样本资料

    (1)若方差齐性,则作成组t检验

    (2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验

    2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验

    2.多组资料:

    1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

    2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

    二、分类资料的统计分析

    1.单样本资料与总体比较

    1)二分类资料:

    (1)小样本时:用二项分布进行确切概率法检验;

    (2)大样本时:用U检验。

    2)多分类资料:用Pearson c2检验(又称拟合优度检验)。

    2. 四格表资料

    1)n>40并且所以理论数大于5,则用Pearson c2

    2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正c2或用Fisher’s 确切概率法检验

    3)n£40或存在理论数<1,则用Fisher’s 检验

    3. 2×C表资料的统计分析

    1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验

    2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验

    3)行变量和列变量均为无序分类变量

    (1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2

    (2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

    4. R×C表资料的统计分析

    1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

    2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c2

    3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析

    4)列变量和行变量均为无序多分类变量,

    (1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearson c2

    (2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

    三、Poisson分布资料

    1.单样本资料与总体比较:

    1)观察值较小时:用确切概率法进行检验。

    2)观察值较大时:用正态近似的U检验。

    2.两个样本比较:用正态近似的U检验。

    配对设计或随机区组设计四、两组或多组计量资料的比较

    1.两组资料:

    1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验

    2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验

    2.多组资料:

    1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

    2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。

    五、分类资料的统计分析

    1.四格表资料

    1)b+c>40,则用McNemar配对c2检验或配对边际c2检验

    2)b+c£40,则用二项分布确切概率法检验

    2.C×C表资料:

    1)配对比较:用McNemar配对c2检验或配对边际c2检验

    2)一致性问题(Agreement):用Kap检验

    变量之间的关联性分析六、两个变量之间的关联性分析

    1.两个变量均为连续型变量

    1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析

    2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析

    2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析

    3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析

    七、回归分析

    1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

    2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

    1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

    2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

    3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

    1)非配对的情况:用非条件Logistic回归

    (1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

    (2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

    2)配对的情况:用条件Logistic回归

    (1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

    (2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

    4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

    1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

    2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

    5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

    1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

    2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用。

    转自:“斐然智达SCI学术服务”微信公众号

    如有侵权,请联系本站删除!


    浏览(166)
    点赞(0)
    收藏(0)
  • 上一篇:分享|期刊编辑告诉你哪些是上高分期刊的关键

    下一篇:医学统计常用词汇中英文对照

  • 首页

  • 文章

  • 期刊

  • 帮助

  • 我的

版权所有 Copyright@2023    备案号:豫ICP备2021036211号